首頁 > 論文 > Opto-Electronic Advances > 2卷 > 5期(pp:190008--1)

Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature

Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature

  • 摘要
  • 論文信息
  • 參考文獻
  • 被引情況
  • PDF全文
分享:

摘要

Manipulation of light-matter interaction is critical in modern physics, especially in the strong coupling regime, where the generated half-light, half-matter bosonic quasiparticles as polaritons are important for fundamental quantum science and applications of optoelectronics and nonlinear optics. Two-dimensional transition metal dichalcogenides (TMDs) are ideal platforms to investigate the strong coupling because of their huge exciton binding energy and large absorption coefficients. Further studies on strong exciton-plasmon coupling by combining TMDs with metallic nanostructures have generated broad interests in recent years. However, because of the huge plasmon radiative damping, the observation of strong coupling is significantly limited at room temperature. Here, we demonstrate that a large Rabi splitting (~300 meV) can be achieved at ambient conditions in the strong coupling regime by embedding Ag-WS2 heterostructure in an optical microcavity. The generated quasiparticle with part-plasmon, part-exciton and part-light is analyzed with Hopfield coefficients that are calculated by using three-coupled oscillator model. The resulted plasmon-exciton polaritonic hybrid states can efficiently enlarge the obtained Rabi splitting, which paves the way for the practical applications of polaritonic devices based on ultrathin materials.

Abstract

Manipulation of light-matter interaction is critical in modern physics, especially in the strong coupling regime, where the generated half-light, half-matter bosonic quasiparticles as polaritons are important for fundamental quantum science and applications of optoelectronics and nonlinear optics. Two-dimensional transition metal dichalcogenides (TMDs) are ideal platforms to investigate the strong coupling because of their huge exciton binding energy and large absorption coefficients. Further studies on strong exciton-plasmon coupling by combining TMDs with metallic nanostructures have generated broad interests in recent years. However, because of the huge plasmon radiative damping, the observation of strong coupling is significantly limited at room temperature. Here, we demonstrate that a large Rabi splitting (~300 meV) can be achieved at ambient conditions in the strong coupling regime by embedding Ag-WS2 heterostructure in an optical microcavity. The generated quasiparticle with part-plasmon, part-exciton and part-light is analyzed with Hopfield coefficients that are calculated by using three-coupled oscillator model. The resulted plasmon-exciton polaritonic hybrid states can efficiently enlarge the obtained Rabi splitting, which paves the way for the practical applications of polaritonic devices based on ultrathin materials.

Newport宣傳-MKS新實驗室計劃
補充資料

DOI:10.29026/oea.2019.190008

所屬欄目:Original Article

收稿日期:2019-03-06

修改稿日期:2019-04-29

網絡出版日期:2019-06-27

作者單位    點擊查看

Bowen Li:School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
Shuai Zu:School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
Zhepeng Zhang:Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
Liheng Zheng:School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
Qiao Jiang:School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
Bowen Du:School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
Yang Luo:School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
Yongji Gong:Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
Yanfeng Zhang:Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
Feng Lin:School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
Bo Shen:School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
Xing Zhu:School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
Pulickel M. Ajayan:Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
Zheyu Fang:School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, and Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, ChinaCollaborative Innovation Center of Quantum Matter, Beijing 100871, China

聯系人作者:Zheyu Fang(zhyfang@pku.edu.cn)

【1】P T?rm? and W L Barnes. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Rep Prog Phys. 78, (2015).

【2】S Christopoulos, G B H Von H?gersthal, A J D Grundy, P G Lagoudakis, A V KavokinS Christopoulos, G B H Von H?gersthal, A J D Grundy, P G Lagoudakis, A V Kavokin et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Phys Rev Lett. 98, (2007).

【3】J Kasprzak, M Richard, S Kundermann, A Baas, P JeambrunJ Kasprzak, M Richard, S Kundermann, A Baas, P Jeambrun et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nature. 443, 409-414(2006).

【4】H Deng, H Haug and Y Yamamoto. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Rev Mod Phys. 82, 1489-1537(2010).

【5】J D Plumhof, T St?ferle, L J Mai, U Scherf and R F Mahrt. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nat Mater. 13, 247-252(2014).

【6】J A Hutchison, T Schwartz, C Genet, E Devaux and T W Ebbesen. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Angew Chem Int Edit. 51, 1592-1596(2012).

【7】J Galego, FJ Garcia-Vidal and J Feist. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nat Commun. 7, (2016).

【8】X Shi, K Ueno, T Oshikiri, Q Sun, K SasakiX Shi, K Ueno, T Oshikiri, Q Sun, K Sasaki et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nat Nanotechnol. 13, 953-958(2018).

【9】A Amo, T C H Liew, C Adrados, R Houdré, E GiacobinoA Amo, T C H Liew, C Adrados, R Houdré, E Giacobino et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nat Photonics. 4, 361-366(2010).

【10】E Peter, P Senellart, D Martrou, A Lema?tre, J HoursE Peter, P Senellart, D Martrou, A Lema?tre, J Hours et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Phys Rev Lett. 95, (2005).

【11】J J Baumberg, A V Kavokin, S Christopoulos, A J D Grundy, R ButtéJ J Baumberg, A V Kavokin, S Christopoulos, A J D Grundy, R Butté et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Phys Rev Lett. 101, (2008).

【12】F Li, L Orosz, O Kamoun, S Bouchoule, C BrimontF Li, L Orosz, O Kamoun, S Bouchoule, C Brimont et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Phys Rev Lett. 110, (2013).

【13】S Kéna-Cohen and S R Forrest. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nat Photonics. 4, 371-375(2010).

【14】V M Agranovich, M Litinskaia and D G Lidzey. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Phys Rev B. 67, (2003).

【15】K F Mak, C Lee, J Hone, J Shan and T F Heinz. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Phys Rev Lett. 105, (2010).

【16】Q H Wang, K Kalantar-Zadeh, A Kis, J N Coleman and M S Strano. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nat Nanotechnol. 7, 699-712(2012).

【17】A RamasubramaniamA Ramasubramaniam. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Phys Rev B. 86, (2012).

【18】D Y Qiu, F H da Jornada and S G Louie. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Phys Rev Lett. 111, (2013).

【19】X Z Liu, T Galfsky, Z Sun, F N Xia, E C LinX Z Liu, T Galfsky, Z Sun, F N Xia, E C Lin et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nat Photonics. 9, 30-34(2015).

【20】Z Sun, J Gu, A Ghazaryan, Z Shotan, C R ConsidineZ Sun, J Gu, A Ghazaryan, Z Shotan, C R Considine et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nat Photonics. 11, 491-496(2017).

【21】Y J Chen, J D Cain, T K Stanev, V P Dravid and N P Stern. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nat Photonics. 11, 431-435(2017).

【22】W L Barnes, A Dereux and T W Ebbesen. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nature. 424, 824-830(2003).

【23】P Vasa, W Wang, R Pomraenke, M Lammers, M MaiuriP Vasa, W Wang, R Pomraenke, M Lammers, M Maiuri et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nat Photonics. 7, 128-132(2013).

【24】A I Va?keva?inen, R J Moerland, H T Rekola, A P Eskelinen, J P MartikainenA I Va?keva?inen, R J Moerland, H T Rekola, A P Eskelinen, J P Martikainen et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nano Lett. 14, 1721-1727(2014).

【25】L Shi, T K Hakala, H T Rekola, J P Martikainen, R J MoerlandL Shi, T K Hakala, H T Rekola, J P Martikainen, R J Moerland et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Phys Rev Lett. 112, (2014).

【26】S R K Rodriguez, J Feist, M A Verschuuren, F J Garcia Vidal and Rivas J Gómez. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Phys Rev Lett. 111, (2013).

【27】C Ha?gglund, G Zeltzer, R Ruiz, A Wangperawong, K E RoelofsC Ha?gglund, G Zeltzer, R Ruiz, A Wangperawong, K E Roelofs et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. ACS Photonics. 3, 456-463(2016).

【28】J H Yang, Q Sun, K Ueno, X Shi, T OshikiriJ H Yang, Q Sun, K Ueno, X Shi, T Oshikiri et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nat Commun. 9, (2018).

【29】J W Shi, M H Lin, I T Chen, N M Estakhri, X Q ZhangJ W Shi, M H Lin, I T Chen, N M Estakhri, X Q Zhang et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nat Commun. 8, (2017).

【30】M S Wang, W Li, L Scarabelli, B B Rajeeva, M TerronesM S Wang, W Li, L Scarabelli, B B Rajeeva, M Terrones et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nanoscale. 9, 13947-13955(2017).

【31】Z Wang, Z G Dong, Y H Gu, Y H Chang, L ZhangZ Wang, Z G Dong, Y H Gu, Y H Chang, L Zhang et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nat Commun. 7, (2016).

【32】A Sobhani, A Lauchner, S Najmaei, C Ayala-Orozco, F F WenA Sobhani, A Lauchner, S Najmaei, C Ayala-Orozco, F F Wen et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Appl Phys Lett. 104, (2014).

【33】S Butun, S Tongay and K Aydin. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nano Lett. 15, 2700-2704(2015).

【34】W Gao, Y H Lee, R B Jiang, J F Wang, T X LiuW Gao, Y H Lee, R B Jiang, J F Wang, T X Liu et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Adv Mater. 28, 701-706(2016).

【35】C Janisch, H M Song, C J Zhou, Z Lin, A L ElíasC Janisch, H M Song, C J Zhou, Z Lin, A L Elías et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. 2D Mater. 3, (2016).

【36】Q Hao, J B Pang, Y Zhang, J W Wang, L B MaQ Hao, J B Pang, Y Zhang, J W Wang, L B Ma et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Adv Opt Mater. 6, (2018).

【37】J W Sun, H T Hu, D Zheng, D X Zhang, Q DengJ W Sun, H T Hu, D Zheng, D X Zhang, Q Deng et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. ACS Nano. 12, 10393-10402(2018).

【38】B Lee, J Park, G H Han, H S Ee, C H NaylorB Lee, J Park, G H Han, H S Ee, C H Naylor et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nano Lett. 15, 3646-3653(2015).

【39】B W Li, S Zu, J D Zhou, Q Jiang, B W DuB W Li, S Zu, J D Zhou, Q Jiang, B W Du et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. ACS Nano. 11, 9720-9727(2017).

【40】M S Wang, A Krasnok, T Y Zhang, L Scarabelli, H LiuM S Wang, A Krasnok, T Y Zhang, L Scarabelli, H Liu et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Adv Mater. 30, (2018).

【41】R Chikkaraddy, B de Nijs, F Benz, S J Barrow, O A SchermanR Chikkaraddy, B de Nijs, F Benz, S J Barrow, O A Scherman et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nature. 535, 127-130(2016).

【42】S J Wang, S L Li, T Chervy, A Shalabney, S AzziniS J Wang, S L Li, T Chervy, A Shalabney, S Azzini et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nano Lett. 16, 4368-4374(2016).

【43】D Zheng, S P Zhang, Q Deng, M Kang, P NordlanderD Zheng, S P Zhang, Q Deng, M Kang, P Nordlander et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nano Lett. 17, 3809-3814(2017).

【44】J X Wen, H Wang, W L Wang, Z X Deng, C ZhuangJ X Wen, H Wang, W L Wang, Z X Deng, C Zhuang et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nano Lett. 17, 4689-4697(2017).

【45】B Lee, W J Liu, C H Naylor, J Park, S C MalekB Lee, W J Liu, C H Naylor, J Park, S C Malek et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nano Lett. 17, 4541-4547(2017).

【46】J Cuadra, D G Baranov, M Wers?ll, R Verre, T J AntosiewiczJ Cuadra, D G Baranov, M Wers?ll, R Verre, T J Antosiewicz et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nano Lett. 18, 1777-1785(2018).

【47】M Wurdack, N Lundt, M Klaas, V Baumann, A V KavokinM Wurdack, N Lundt, M Klaas, V Baumann, A V Kavokin et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nat Commun. 8, (2017).

【48】B Chakraborty, J Gu, Z Sun, M Khatoniar, R BushatiB Chakraborty, J Gu, Z Sun, M Khatoniar, R Bushati et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nano Lett. 18, 6455-6460(2018).

【49】J A Schuller, E S Barnard, W S Cai, Y C Jun, J S WhiteJ A Schuller, E S Barnard, W S Cai, Y C Jun, J S White et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nat Mater. 9, 193-204(2010).

【50】D Chanda, K Shigeta, T Truong, E Lui, A MihiD Chanda, K Shigeta, T Truong, E Lui, A Mihi et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nat Commun. 2, (2011).

【51】R Ameling and H Giessen. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Nano Lett. 10, 4394-4398(2010).

【52】J J HopfieldJ J Hopfield. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Phys Rev. 112, 1555-1567(1958).

【53】Y L Li, A Chernikov, X Zhang, A Rigosi, H M HillY L Li, A Chernikov, X Zhang, A Rigosi, H M Hill et al.Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Phys Rev B. 90, (2014).

引用該論文

Bowen Li, Shuai Zu, Zhepeng Zhang, Liheng Zheng, Qiao Jiang, Bowen Du, Yang Luo, Yongji Gong, Yanfeng Zhang, Feng Lin, Bo Shen, Xing Zhu, Pulickel M. Ajayan, Zheyu Fang. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature[J]. Opto-Electronic Advances, 2019, 2(5): 190008

Bowen Li, Shuai Zu, Zhepeng Zhang, Liheng Zheng, Qiao Jiang, Bowen Du, Yang Luo, Yongji Gong, Yanfeng Zhang, Feng Lin, Bo Shen, Xing Zhu, Pulickel M. Ajayan, Zheyu Fang. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature[J]. Opto-Electronic Advances, 2019, 2(5): 190008

您的瀏覽器不支持PDF插件,請使用最新的(Chrome/Fire Fox等)瀏覽器.或者您還可以點擊此處下載該論文PDF

在线看黄av免费