首頁 > 論文 > 光學學報 > 39卷 > 6期(pp:628002--1)


Event Discrimination Method for Distributed Optical Fiber Intrusion Sensing System Based on Integrated Time/Frequency Domain Feature Extraction

  • 摘要
  • 論文信息
  • 參考文獻
  • 被引情況
  • PDF全文




To reduce the high false alarm rate of the distributed fiber intrusion monitoring system in outdoor complex environment, this study proposes and demonstrates an intrusion event discrimination method based on integrated time/frequency domain feature extraction. First, a vibration fragment segmentation algorithm based on a self-adaptive amplitude threshold is developed to distinguish the vibrating part. On this basis, the average fragment interval feature is extracted. Next, the vibration fragment with the maximum energy is chosen as the research target, and the length and peak-to-average ratio are extracted in the time domain, whose energy distribution in the frequency domain is calculated according to wavelet packet decomposition and an integrated time/frequency domain feature vector is formed. Finally, one-versus-one support vector machine is used to classify four common intrusion events: footsteps of a passerby, bicycle rolling, knocking on the fence, and cutting of an optical cable. The experimental results show that the proposed method recognizes the abovementioned four common intrusion events with an average accuracy of 98.33%, which is much more accurate than the methods that only extract the time or frequency domain features. Moreover, the proposed method is immune to the optical power variation in light path. Thus, the proposed method is helpful to improve the utility of the system.








作者單位    點擊查看

彭寬:華中科技大學光學與電子信息學院, 湖北 武漢 430074武漢飛思靈微電子技術有限公司, 湖北 武漢 430074
馮誠:華中科技大學光學與電子信息學院, 湖北 武漢 430074
王森懋:華中科技大學光學與電子信息學院, 湖北 武漢 430074
艾凡:華中科技大學光學與電子信息學院, 湖北 武漢 430074
李豪:華中科技大學光學與電子信息學院, 湖北 武漢 430074
劉德明:華中科技大學光學與電子信息學院, 湖北 武漢 430074
孫琪真:華中科技大學光學與電子信息學院, 湖北 武漢 430074



【1】Liu D M, Sun Q Z, Lu P et al. Research progress in the key device and technology for fiber optic sensor network. Photonic Sensors. 6(1), 1-25(2016).

【2】Allwood G, Wild G and Hinckley S. Optical fiber sensors in physical intrusion detection systems: a review. IEEE Sensors Journal. 16(14), 5497-5509(2016).

【3】Huang S C, Lin W W, Tsai M T et al. Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks. Sensors and Actuators A: Physical. 135(2), 570-579(2007).

【4】Lopez-Higuera J M, Rodriguez Cobo L, Quintela Incera A et al. . Fiber optic sensors in structural health monitoring. Journal of Lightwave Technology. 29(4), 587-608(2011).

【5】Liao Y B, Yuan L B and Tian Q. The 40 years of optical fiber sensors in China. Acta Optica Sinica. 38(3), (2018).
廖延彪, 苑立波, 田芊. 中國光纖傳感40年. 光學學報. 38(3), (2018).

【6】Li P C, Liu K, Jiang J F et al. Research on polarization control of distributed optical fiber sensing system based on FPGA. Chinese Journal of Lasers. 45(5), (2018).
李鵬程, 劉琨, 江俊峰 等. 基于FPGA的分布式光纖傳感系統偏振控制研究. 中國激光. 45(5), (2018).

【7】Ghafoori-Shiraz H and Okoshi T. Fault location in optical fibers using optical frequency domain reflectometry. Journal of Lightwave Technology. 4(3), 316-322(1986).

【8】Huang X D, Wang Y D, Liu K et al. Event discrimination of fiber disturbance based on filter bank in DMZI sensing system. IEEE Photonics Journal. 8(3), 1-14(2016).

【9】Liu K, Tian M, Liu T G et al. A high-efficiency multiple events discrimination method in optical fiber perimeter security system. Journal of Lightwave Technology. 33(23), 4885-4890(2015).

【10】Jiang L H, Gai J Y, Wang W B et al. Ensemble empirical mode decomposition based event classification method for the fiber-optic intrusion monitoring system. Acta Optica Sinica. 35(10), (2015).
蔣立輝, 蓋井艷, 王維波 等. 基于總體平均經驗模態分解的光纖周界預警系統模式識別方法. 光學學報. 35(10), (2015).

【11】Jiang L H, Liu X M and Yang R Y. Application of the HHT method to the airport fiber fence warning. [C]∥2011 International Conference on Electronics, Communications and Control (ICECC), September 9-11, 2011, Ningbo, China. New York: IEEE. 1337-1340(2011).

【12】Mahmoud S S, Visagathilagar Y and Katsifolis J. Real-time distributed fiber optic sensor for security systems: performance, event classification and nuisance mitigation. Photonic Sensors. 2(3), 225-236(2012).

【13】Li K Y, Zhao X Q, Sun X H et al. A regular composite feature extraction method for vibration signal pattern recognition in optical fiber link system. Acta Physica Sinica. 64(5), (2015).
李凱彥, 趙興群, 孫小菡 等. 一種用于光纖鏈路振動信號模式識別的規整化復合特征提取方法. 物理學報. 64(5), (2015).

【14】Huang X D, Zhang H J, Liu K et al. High-efficiency intrusion recognition by using synthesized features in optical fiber perimeter security system. Acta Physica Sinica. 66(12), (2017).
黃翔東, 張皓杰, 劉琨 等. 基于綜合特征的光纖周界安防系統高效入侵事件識別. 物理學報. 66(12), (2017).

【15】Wang H, Sun Q Z, Li X L et al. Improved location algorithm for multiple intrusions in distributed Sagnac fiber sensing system. Optics Express. 22(7), 7587-7597(2014).

【16】Donoho D L. De-noising by soft-thresholding. IEEE Transactions on Information Theory. 41(3), 613-627(1995).

【17】Jansen M. Noise reduction by wavelet thresholding. New York: Springer-Verlag. 35-39(2001).

【18】Hu G S. Modern digital signal processing tutorial. 381-388(2015).
胡廣書. 現代數字信號處理教程. 381-388(2015).

【19】Han L H, Wang B and Duan S F. Development of voice activity detection technology. Application Research of Computers. 27(4), 1220-1226(2010).
韓立華, 王博, 段淑鳳. 語音端點檢測技術研究進展. 計算機應用研究. 27(4), 1220-1226(2010).

【20】Tanyer S G and Ozer H. Voice activity detection in nonstationary noise. IEEE Transactions on Speech and Audio Processing. 8(4), 478-482(2000).

【21】Jain A K. Duin R P W, Mao J C. Statistical pattern recognition: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence. 22(1), 4-37(2000).

【22】Liu L, Sun W, Zhou Y et al. Security event classification method for fiber-optic perimeter security system based on optimized incremental support vector machine. ∥Li S, Liu C, Wang Y. Communications in Computer and Information Science. Berlin, Heidelberg: Springer. 595-603(2014).

【23】Wang L K, Tan D J, Cai Y J et al. Study on method of recognizing characteristics of pipeline leakage acoustic signals. [C]∥Pipeline Division. 2006 International Pipeline Conference, September 25-29, 2006, Calgary, Alberta, Canada. New York: ASME. 751-755(2006).

【24】Sun J D and Jin S J. Feature extraction method based on wavelet packet energy and high-order spectrum. Journal of Tianjin University. 43(6), 562-566(2010).
孫潔娣, 靳世久. 基于小波包能量及高階譜的特征提取方法. 天津大學學報. 43(6), 562-566(2010).

【25】Neural networks and learning machines. 144-193(2011).
Haykin S and Simon Haykin. 神經網絡與機器學習. 144-193(2011).

【26】Hsu C W and Lin C J. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks. 13(2), 415-425(2002).

【27】Lingras P and Butz C. Rough set based 1-v-1 and 1-v-r approaches to support vector machine multi-classification. Information Sciences. 177(18), 3782-3798(2007).

【28】Li Y C, Xue Q and Fu X J. Analysis on features of stealing oil signal of pipeline with wavelet transform. Journal of Wuhan University of Technology. 32(6), 76-79, 94(2010).
李迎春, 薛琴, 付興建. 管道盜警信號特征提取的小波分析. 武漢理工大學學報. 32(6), 76-79, 94(2010).


Kuan Peng, Cheng Feng, Senmao Wang, Fan Ai, Hao Li, Deming Liu, Qizhen Sun. Event Discrimination Method for Distributed Optical Fiber Intrusion Sensing System Based on Integrated Time/Frequency Domain Feature Extraction[J]. Acta Optica Sinica, 2019, 39(6): 0628002

彭寬, 馮誠, 王森懋, 艾凡, 李豪, 劉德明, 孫琪真. 基于時/頻域綜合特征提取的分布式光纖入侵監測系統事件識別方法[J]. 光學學報, 2019, 39(6): 0628002

您的瀏覽器不支持PDF插件,請使用最新的(Chrome/Fire Fox等)瀏覽器.或者您還可以點擊此處下載該論文PDF